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Nonstationary currents are examined in a dense magnetized plasma with # >> I, in which en- 
ergy release and heat loss by thermal conduction and radiation are possible. Solutions are 
found in two limiting cases: If[ >> [ div (~VT)[ and If[ << [ div (~VT) I (f is the radiation in'- 
tensity, ~? is the coefficient of heat conduction, and T is the temperature). In the first case 

a solution was obtained of some problems of the cooling and heating of a plasma illustrated 
in part by the evolution in time of the temperature profile in the boundary layer. In the 
s e c o n d  c a s e  an i s o m o r p h i c  so lu t ion  was  found fo r  an a r b i t r a r y  de pe nde nc e  of  the  c o e f f i -  
c i en t  of hea t  conduc t ion  on the t e m p e r a t u r e ,  p r e s s u r e ,  and  m a g n e t i c  f ie ld .  

1 ,  
e x a m i n e d  below, which  a r e  d e s c r i b e d  in  g e n e r a l  by the  fo l lowing  s ] s t e m  of equa t i ons  [1, 2]: 
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H e r e  p(x,  t),  p(x,  t) ,  T(x,  t ) ,  v(x, t),  H(x, t ) ,  x ,  and t a r e  the  p r e s s u r e ,  dens i ty ,  t e m p e r a t u r e ,  v e l o c i t y ,  
m a g n e t i c  f ie ld ,  c o o r d i n a t e ,  and  t i m e ,  r e s p e c t i v e l y ;  y i s  an a d i a b a t i c  index;  R i s  the  gas  cons tan t ;  ~(T, p, H) 
i s  the  c o e f f i c i e n t  of hea t  conduc t ion ,  f (p, T) and  g(p, T, x) a r e  the  i n t e n s i t i e s  of r a d i a t i o n  and e n e r g y  r e -  
l e a s e .  I t  i s  a s s u m e d  tha t  the  m a g n e t i c  f ie ld ,  p e r p e n d i c u l a r  to  x,  i s  f r o z e n  into  the  p l a s m a .  At  the po in t  
x = 0  the p l a s m a  i s  in con t ac t  wi th  the  b o u n d a r y  wa l l  (plane),  w h e r e  the  fo l lowing cond i t i ons  a r e  s a t i s f i e d :  

x = 0, v - 0, T = To (1.6) 

The  s y s t e m  of equa t ions  (1.1)-(1.5)  d e s c r i b e s  the  p r o c e s s e s  of hea t ing  and  coo l ing  u n d e r  the  c o n d i -  
t ions  of a t h e r m o n u c l e a r  r e a c t o r  wi th  a d e n s e  p l a s m a  which i s  conf ined  by w a i l s  [1]. A c h a r a c t e r i s t i c  
p r o p e r t y  of  t h e s e  p r o c e s s e s  i s  t h e i r  s l o w n e s s  in c o m p a r i s o n  with  the  t i m e  of c i r c u l a t i o n  of sound waves .  
F o r  e x a m p l e ,  the  t i m e  of p a s s a g e  of a sound  wave a c r o s s  a p l a s m a  co lumn 100 c m  in d i a m e t e r  with T =  
108~ wi l l  be on the  o r d e r  of  l0  -G sec ,  w h e r e a s  the  c h a r a c t e r i s t i c  t i m e  of p l a s m a  he a t i ng  i s  on the  o r d e r  
of 10-4-10 -3 sec ,  and  the  coo l ing  t i m e  i s  on the  o r d e r  of s e v e r a l  t e n s  of m i c r o s e c o n d s .  In v i ew of th i s  one 
can  c a l c u l a t e  tha t  the  p r e s s u r e  a long  the  x a x i s  i s  ab le  to  e q u a l i z e  

a (p H2 
--o~ Je --~]j = 0 (1.7) 

F u n  d a m e n t a 1 E q u a t i o n s .  O n e - d i m e n s i o n a l  n o n s t a t i o n a r y  c u r r e n t s  of  a f lu id  (p lasma)  a r e  
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Furthermore, in systems where the plasma is confined by magnetic ,walls the pressure is usually 
smal l  in compar i son  with the gas kinet ics  

p >~ H ~ I (8~) (1.8) 

and the magnetic field has an effect only on the heat conduction. 

Since in general analytical solutions of the system (1.1)-(1.5) callnot be achieved, we will examine 
below two lin~iting cases: where heat conduction is low and the processes of radiation and energy release 
dominate 

 )[<If-gJ (i.9) 

and vice ve r s a ,  where  the ro le  of heat conduction p redomina tes  

.07" 

2. Case  of  D o m i n a n t  R o l e  of  R a d i a t i o n  and E n e r g y  R e l e a s e .  Dropping the heat 
conduction term in (1.4) in accordance with the condition (1.9) and the magnetic pressure term in (1.7) 
[substituting (1.1)] in accordance with (1.8), we see that the magnetic field now has no effect in general on 
the dynamics of the process. Taking (1.5) and (1.7) into account, Eqs. (1.2) and (1.4) are written in the 
form 

a p "~{ ( "-T" ) ' o! ,  v \ • p ~ ( - - ~ )  = o (2.1) 

~, aT ~ Op 
+ - - I + g ( 2 . 2 )  

(~ -- ~) T Tx / ~i" = 

In the present case it is expedient to write therein Lagrangian coordinates. The independent vari- 
ables will be t and a-~(t=0), while the values sought are T(a, t), p(a, t), and ~(a, t), where ~ are coordi- 
nates of the Langrangian points. Equations (1.7), (2.1), and (2.2) are rewritten in the form 

a-2-P = 0 (2.3) 
Oa 

O~ T(a,t) p~ = 0 ;  T o ( a ) = : T ( a , t = 0 ) ,  P o = P ( t = 0 )  (2.4) 
Oa To(a) p(t) 

T p aT dp 
T - -  i T at at + f - - g = 0  (2.5) 

Equations (2.3)-(2.5) a r e  eas i ly  solved s i n c e f  and g a r e  functions of p and T and do not depend on ~, 
a,  and t. This  condition holds for  p r o b l e m s  involving nonsta t ionary  flow through a t he rmonuc l ea r  r e a c t o r  
(after  heating) and cooling of a p l a s m a  by radiat ion.  I t  i s  espec ia l ly  s imple  to find the solution when the 
p r e s s u r e  does not change with t ime:  p = p 0 = e o n s t .  This condition is  of i n t e r e s t  for  p r o b l e m s  of p l a sma  
cooling, s ince in view of the s t rong dependence of the react ion  ra te  on t e m p e r a t u r e  a cons iderable  dec rea se  
in the energy  r e l e a s e  can occur  with even a smal l  dec rease  in Tmax,  and consequently in p. 

I f  p = const ,  Eq. (2.5) is  immed ia t e ly  integrated;  

Tp0 I dT (2.6) t = F ( T ( a , t ) ) - - F ( T o ( a , t ) ) ,  F ( t )  ~ - - i  "T (/-- g) 

Substituting the T(a ,  t) found f r o m  this  into (2.4) and in tegra t ing it, we find ~(a,  t). 

We examine the case  where  g=0  a n d f = b T  -1, and the r e s t  of the p rob l em is  solved analyt ical ly.  We 
allen find (2.7) f r o m  (2.6), 

T-- (~--I) b t + To(a  ) (2.7) 
T p0 

We take the initial  prof i le  in the fo rm T0(a) =k~-'a. We then obtain f rom (2.4) and (2.7) 

[ = a -- 2kt~fa, ~ ---~ (T--i)b (2.8) 
Tkpo 



Express ing  a through ~ and t and substi tuting into (2.7), we obtain, re turn ing  to Euler ian coordinates  
(~ --  x), 

T (x, t) = k (x + 2~ t  ~ Jr 2~t ~ ~- x)V~ --  ~kt (2.9) 

By vi r tue  of (2.10) this express ion  is  valid for  

O ~ x ~ l - - 2 k t l / - [ ,  O ~ t ~  lf-i-- 2k 

where  l i s  the th ickness  of the p l a s m a  l aye r  at the ini t ial  moment .  

I t  i s  seen f rom (2.9) in pa r t i cu l a r  how the s teepness  of the prof i le  T(x, t) changes with t ime.  One 
can show that  8T/0x in the given case  g~cows not m o r e  than twofold, despite  the opinion s o m e t i m e s  ex-  
p r e s s e d  that deexcitation of a p l a s m a  confined by walls leads to a cons iderable  i nc r ea se  in the s teepness  
of the front .  

In some ca se s  one can obtain a solution of the s y s t e m  (2.3)-(2.5) without making the assumption that 
p=cons t .  We examine the case  g= O , f =  bpZT-a/2 (bremss t rahlung) .  We wri te  Eq. (2.5) in the fo rm 

Oz - -  b r dy ~-1, 
0--] = (-d~) t r y -  sz) 

y = l n p ,  z =  ~-~ l  l n r - l n p '  r = 1 3 Z ~  ' s =  3(~--i)2~ 

In tegra t ing  this express ion  and re tu rn ing  to the prev ious  notation, we obtain 
t 

= sp* { -  b p- at + (.)} (2 10) 
o 

c~ (a) .=- To'h(a ) (spS) "1 

On the other hand, the p l a s m a  p r e s s u r e  is  p ropor t iona l  to i ts  in ternal  energy,  so that 

l l 
dp (T - -  i )  [ '  dt ~ ~ ] d x :  (T-- I )bp~ r T- / ' (a ' t )  ~ 

= l ~ ~ a a  
o o 

We define 

(2.11) 

t 

I (d~ ~-~, (2.12) = p-~dt, P = ~. a t )  
o 

Substituting these  expres s ions  into (2.10) and then T(~) and p(~) into (2.11), we find a differential  
equation for  de termining  ~ (t), 

t d ~  \ l - B l ~ r  
d2~dt, = --  a I-~T ) F (;) (2.13) 

I 

A = (T - -  t) rs-'/,bpo / l, F (~) = j ~ 
o 

In tegra t ing  (2.13) we obtain 

__2A(3__T, . I ( !F(~,d:  _~ C,}],/. (a_,)-~C~ (2.14) 

where  C 1 and C 2 are  constants  of integrat ion.  Equations (2.10), (2.12), and (2.14) give a solution to the 
p rob lem proposed.  

Under these  conditions, where  g ~ 0 and is  a function of x (for example ,  in heating a p l a sma  by out-  
side sources  of heat), the solution of (2.3)-(2.5) is  somewhat  complicated.  However ,  the fact  that in ca se s  
of p rac t i ca l  i n t e r e s t  the dependence g(x) is  quite s imple  is a s implifying c i r cums tance .  Fo r  example ,  

0, O ~ x ~ x , = t o - - I  I 
g =  g0, x ~ < ~ x ~ x s ~ - l o  (2.15) 



Here  l0 is  the half width of a p l a s m a  l aye r  with plane s y m m e t r y  at the point  xl; ll i s  the half  width of 
the zone of heating. 

In different  regions  of var ia t ion  in x one can find solutions as was done above and then join them 
together .  

We p r e s e n t  the solution of a ve ry  s imple  p rob l em of a s im i l a r  type - the heat ing and expansion of a 
gas where  g(x) has the fo rm of (2.15) and radiat ion is  absent  ( f=O) .  In  this case  the re  will be solutions of 
th ree  different  types,  cor responding  to the p l a sma  pa r t i c l e s  which a r e  always in the zone of heating, to the 
pa r t i c l e s  f i r s t  found within this zone and then escaping  f rom it, and for  the pa r t i c l e s  outside the heat ing 
zone. Turning to the d i scovery  of a solution of the f i r s t  type,  keeping in mind (2.15), we e x p r e s s  g through 
dp/dt  f r o m  (2.11) (where g mus t  now be used in place  o f f )  and subst i tute in (2.5). We obtain 

"r OT (7--t)/1~-/0 t dp 
( ~ f - - i )  Ot - -  ( ' r - -  l )  lo p d t  

Hence 

( p ) 4  ( l - - t )  ll+10 
T = To - ~ -  , o~ (7 - -  i )  lo ( 2 . 1 6 )  

This solution holds for  the r e g i o n / 0 - l l - < x -  < 10. In the next case  the p l a s m a  pa r t i c l e s  while they a r e  
found within the heating zone a r e  heated in accordance  with Eq. (2.16) up to some t e m p e r a t u r e  T I=  
T0(pl/p0 )~, and then f rom T 1 to T according to the adiabatic  equation T = Tl(p/pl)( '~-l) /7.  Consequently, 

T 

I f  pa r t i c l e s  having t e m p e r a ~ r e  T a re  found at point x, then 

l0 - -  x 

F r o m  this,  express ing  Pt/P through x and subst i tut ing in (2.17), we obtain a solution of the second 
type,  

The region of its application is 

x 3 ~ x ~ l o - -  l 1, x 8 = l o - -  ( l  o - -  11) ( p / p o ) - I  1~ 

FinaUy, the solution of the th i rd  type has the fo rm 

T { p ~(z-1)/x 
T-';" = ~ 7 "  

and holds for  0 -- x < x 3. 

3 :  C a s e  o f  D o m i n a n t  R o l e  o f  H e a t  C o n d u c t i o n .  I f  condition (1.10) is  sat isf ied,  then 
in a number  of p rob l em s  i somorph ic  solutions of s y s t e m  (1.1)-(1.5) can be found. We a s sume  that condi-  
tion (1.7) is  sa t i s f ied  and at the s ame  t ime  

-t- --~-) = 0, p"[ ' - -~- '=Po-~eonsl ,  (3.1) 

It is assumed that condition (1.8) is not satisfied, which is physically possible under the conditions 
of the problem under examination (confinement by walls), since the plasma with the field frozen-in shifts 
to the wall and is cooled there. In the given case Eq. (1.4) will have the form 

- ( 3 . 2 )  7 t T 

while we take Eq. (1.2) in the fo rm (2.1). The p r o c e s s  as  a whole is  desc r ibed  by Eqs.  (3.1), (3.2), (2.1), 
and (1.3) with the boundary conditions (1.6). 

Assuming  that  the t e m p e r a t u r e  is  e x p r e s s e d  in energet ic  units (ergs),  we introduce the dimensional  
values  To, P0, H0, S= T0~?(T0, P0, H0)/P0 and fo rm the d imens ion less  p a r a m e t e r s  

4 



x T P h : H t~ ~] (7", p, H) 
~=--V-~' ~  ~=To '  Vs-~o' ~ = ~ - '  • po, Uo) 

Equations (3.1), (3.2), (2.1), and (1.3) are then written in the form 

6 + h ~ = I ( 3 . 3 )  

( )( _ ) ( s 0 )  t T z dO dz d ~ " ~  (3 .4)  

- -  2 ] d~ ~ 0 J + - C - ~  (vu) = 0 (3.5) 

- T )  - ~  + 0 (3.6) 

Thus ,  the  p r o b l e m  c o m e s  down to t he  so lu t ion  of a s y s t e m  of o r d i n a r y  d i f f e r e n t i a l  equa t ions  and the  
c o r r e s p o n d i n g  i s o m o r p h i c  so lu t ion .  We e m p h a s i z e  tha t  the  i s o m o r p h i s m  i s  p r e s e r v e d  fo r  any  d e p e n d e n c e  
of  ~ on T, p,  and  H, which  i s  m a d e  p o s s i b l e  t hanks  to  t he  f o r m  of the  p a r a m e t e r s  0, 6, and  h i n d i c a t e d  above .  
(The quantities x and t did not enter into them.*) 

From (3.5), (3.6), and (3.3) we find 

h=C- V, O= yt_-----~ 

where C is an arbitrary constant. 

Equations (3.4) and (3.5) are now written thus: 

( ) E '~ t dz C ( 7 - - t ) ( t . z )  d •  = 0  (3.7) 
"~ U -:----~- dz ~-~-2(1 --~) d~ 

(U ---~-]-d'i'--t ~ dz 2 (1 - -  Z) -3Fd (UT) = 0 (3-8) 

We f ind  a so lu t ion  n e a r  ~= 0, t r y i n g  to s a t i s f y  the  b o u n d a r y  cond i t ion  (1.6), which  now has  the f o r m  

o ' - -  O, "~u = 0  for, "~ = 0  (3.9)  

We assume that 

• (0, ~, h) = Ol~h n (3.10) 

where l, m, and n are constants. A dependence of type (3.10) is characteristic for a magnetized plasma if 

its temperature is much higher than the magnetization temperature. We assume that near T = 0 

(~) = %~% u = uo~ (3. ii) 

To satisfy condition (3.9) it is necessary that 

a > 0 ,  ~ + t > 0  (3.12) 

F r o m  (3.8) we ge t  

- -  CtZo'~ ~ (Uo'~ - ~/~) + Uo (1 + ~) ~ = 0 

This equation is satisfied at ~--~ 0 if we set 

= a, u 0 = - - a ~ 0 / 2 ( a + l )  

N e g l e c t i n g  the  s m a l l  t e r m s  in Eq. (3.7) we w r i t e  i t  in the  f o r m  

d~ + 2 C ( 7 - - t ) - ~ - \  d '~]=O 

Subs t i t u t ing  h e r e  (3.10) and (3.11), we obta in  

~r ~ + 2C(T - -  l ) a  [(m + l + i ) a  - -  l ]  ~(m~+t) :-~ _ 0 (3.13) 

* The  i s o m o r p h i c  so lu t ion  of  the  h e a t  conduc t ion  equa t ion  fo r  the  a r b i t r a r y  d e p e n d e n c e  of x(T)  was  d e m o n -  
s t r a t e d  by N. A. D m i t r i e v  [3]. 



I f  we se t  

and if 

a = (m § l § i) -1 (3.14) 

m § Z § 1 ~ 0  (3.15) 

then the f i r s t  t e r m  of (3.13), p ropor t iona l  to the posi t ive  power  of r as 1---* 0, will be smal l  in compar i son  
with the second t e r m ,  propor t ional  to T -1. Since the coefficient  of the second t e r m  for  the condition (3.14) 
r e v e r s e s  at zero ,  this  means  that Eq. (3.13) is  sa t i s f ied  by the express ion  ~=~0 ~-~ in the l imit  T--" 0. In 
observance  of (3.15) condition (3.12) is  also sat isf ied,  so that  the solution found sa t i s f i e s  the boundary con-  
ditions. 

The author  is  grateful  to G. I.  Budker  for  formulat ing the p rob lem.  
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